

Threat Model for Designers Electronic Payment Server

March 6, 2023

API Version 1.0

Document Summary

This document contains known threats and countermeasures necessary to keep an Electronic Payment Server (EPS) secure. It is not a comprehensive assessment of any specific implementation. Keeping the EPS secure is the responsibility of each implementer.

Contributors

Clerley Silveira, PDI Kim Seufer, Conexxus Chuck Young, Impact 21 Mark Carl, PDI Sue Chan, W. Capra Linda Toth, Conexxus Casey Brant, Conexxus

Revision History

Revision Date	Revision Number	Revision Editor(s)	Revision Changes
3/6/2023	Version 1.0	Kim Seufer, Conexxus	Final Release Version 1.0
10/24/2022	Draft 1.0	Kim Seufer, Conexxus	Resolved comments from legal review
08/10/2022	Draft 0.5	Casey Brant, Conexxus	Accepted changes in preparation for legal review
07/23/2022	Draft 0.4	Sue Chan, W. Capra	Updates from Mark Carl & Chuck Young – Section 10, Additional updates: updates per new template, copyright, watermark, formatting
01/10/2022	Draft 0.3	Kim Seufer, Conexxus	Fix cover page and copyright
12/30/2021	Draft 0.2	Clerley Silveira, PDI	 Updates requested during the last meeting: Add Double arrow between the OPT controller and the OPT Second diagram representing the Cloud risk Annotate the description of the diagrams. Add reference to TLS, RSA

			encryption and OAuth.
12/03/2021	Draft 0.1	Clerley Silveira, PDI	Initial Document

Copyright Statement

Copyright © IFSF, CONEXXUS, INC., 2023, All Rights Reserved

The content (content being images, text or any other medium contained within this document which is eligible of copyright protection) are jointly copyrighted by Conexxus and IFSF. All rights are expressly reserved.

IF YOU ACQUIRE THIS DOCUMENT FROM IFSF. THE FOLLOWING STATEMENT ON THE USE OF COPYRIGHTED MATERIAL APPLIES:

You may print or download to a local hard disk extracts for your own business use. Any other redistribution or reproduction of part or all of the contents in any form is prohibited.

You may not, except with our express written permission, distribute to any third party. Where permission to distribute is granted by IFSF, the material must be acknowledged as IFSF copyright and the document title specified. Where third party material has been identified, permission from the respective copyright holder must be sought.

You agree to abide by all copyright notices and restrictions attached to the content and not to remove or alter any such notice or restriction.

Subject to the following paragraph, you may design, develop and offer for sale products which embody the functionality described in this document.

No part of the content of this document may be claimed as the Intellectual property of any organisation other than IFSF Ltd and Conexxus, Inc, and you specifically agree not to claim patent rights or other IPR protection that relates to:

- a) the content of this document; or
- b) any design or part thereof that embodies the content of this document whether in whole or part.

For further copies and amendments to this document please contact: IFSF Technical Services via the IFSF Web Site (<u>www.ifsf.org</u>).

IF YOU ACQUIRE THIS DOCUMENT FROM CONEXXUS, THE FOLLOWING STATEMENT ON THE USE OF COPYRIGHTED MATERIAL APPLIES:

Conexxus members may use this document for purposes consistent with the adoption of the Conexxus Standard (and/or the related documentation), as detailed in the Implementation Guide; however, Conexxus must pre-approve any inconsistent uses in writing.

Except in the limited case set forth explicitly in this Copyright Statement, the Member shall not modify, adapt, merge, transform, copy, or create derivative works of the Conexxus Standard, including the documentation suite and the application programing interface ("API"). Conexxus recognizes that the API may include multiple Definition Files, and accordingly recognizes and agrees that the Member may implement one, some, or all Definition Files within the API, unless otherwise specified in the Implementation Guide, provided that each Definition File implemented is implemented in full. Here implementing a Definition File in full means that all functionality defined by the Conexxus Standard for the Definition File is implemented. Regardless of whether the Member implements one, some, or all Definition Files, the Member agrees to abide by all requirements under this Copyright Statement for each of the Definition Files implemented.

Note that some functionality within a Definition File is specified for predefined error or non-implementation codes to be returned. For functionality where such predefined codes are specified, returning such a predefined code constitutes an implementation. However, in such cases, a Member may not return codes or values different from the predefined codes, nor may the Member simply not implement the functionality, as this would create a Definition File that was not fully implemented as required under this Copyright Statement.

The Member hereby waives and agrees not to assert or take advantage of any defense based on copyright fair use. The Member, as well as any and all of the Member's development partners who are responsible for implementing the Conexxus Standard for the Member or may have access to the Conexxus Standard, must be made aware of, and agree to comply with, all requirements under this Copyright Statement prior to accessing any documentation or API.

Conexxus recognizes the limited case where a Member wishes to create a derivative work that comments on, or otherwise explains or assists in its own implementation, including citing or referring to the standard, specification, code, protocol, schema, or guideline, in whole or in part. The Member may do so **ONLY** for the purpose of explaining or assisting in its implementation of the Conexxus Standard and the Member shall acquire no right to ownership of such derivative work. Furthermore, the Member may share such derivative work **ONLY** with another Conexxus Member who possesses appropriate document rights or with an entity that is a direct contractor of the Conexxus Member who is responsible for implementing the standard for the Member. In so doing, a Conexxus Member shall require its development partners to download Conexxus documents, API, and schemas directly from the Conexxus website. A Conexxus Member may not furnish this document in any form, along with any derivative works, to nonmembers of Conexxus or to Conexxus Members who do not possess document rights or who are not direct contractors of the Member, including to any direct contractor of the Member who does not agree in writing to comply with the terms of this Copyright Statement. A Member may demonstrate its Conexxus membership at a level that includes document rights by presenting an unexpired digitally signed Conexxus membership certificate.

This document may not be modified in any way, including removal of the copyright notice or references to Conexxus. However, a Member has the right to make draft changes to schema or API code for trial use, which must then be submitted to Conexxus for consideration to be included in the existing standard. Translations of this document into languages other than English shall continue to reflect the Conexxus copyright notice.

The limited permissions granted above are perpetual and will not be revoked by Conexxus, Inc. or its successors or assigns, except in the circumstance where an entity, who is no longer a member in good standing but who rightfully obtained Conexxus Standards as a former member, is acquired by a non-member entity. In such circumstances, Conexxus may revoke the grant of limited permissions or require the acquiring entity to establish rightful access to Conexxus Standards through membership.

Disclaimers

IF YOU ACQUIRE THIS DOCUMENT FROM CONEXXUS, THE FOLLOWING DISCALIMER STATEMENT APPLIES:

Conexxus makes no warranty, express or implied, about, nor does it assume any legal liability or responsibility for, the accuracy, completeness, or usefulness of any information, product, or process described in these materials, even if such liability was disclosed to Conexxus or was foreseeable. Although Conexxus uses commercially reasonable best efforts to ensure this work product is free of any encumbrances from third-party intellectual property rights (IPR), it cannot guarantee that such IPR does not exist now or in the future. Conexxus further notifies each user of this standard that its individual method of implementation may result in infringement of the IPR of others. Accordingly, each user is encouraged to seek legal advice from competent counsel to carefully review its implementation of this standard and obtain appropriate licenses where needed.

Table of Contents

1		Introduction and Overview	•7			
2		API Description	•7			
3		Use Cases	.8			
4		Asset Identification	.8			
5		Data Identification	.9			
6		API Consumers	12			
7		Data Protection	13			
	7.	1 Data Confidentiality	13			
	7.	2 Data Encryption	13			
	7.	3 Data Integrity	15			
8		Logging and Auditing	17			
9	Compliance					
10	0 Common Threat Examples					
11	1 Additional Threats 21					
	A	A. References				

Project

Electronic Payment Server

Subtitle

EPS Threat Model

1 Introduction and Overview

Threat modeling is a process to assess and document the security risks associated with an application. This modeling is used to help a development team identify security strengths and weaknesses of a system and serve to identify, categorize, and prioritize threats as well as how to mitigate them.

There are a variety of methods for conducting threat modeling. Merely responding to the questions in this document does not produce a formal threat model, but it is meant to help a development team to think, consider, and address the kinds of harmful things that can be done to an application or system before it is built. The goal is to design security into the product before any coding is done. The information in this document should be used by standards groups, system architects, designers, and the specific development team to help build a formal threat model or at least evaluate a design to ensure adequate security.

An implementer of an API should use this document as a foundation for a threat model. The individual should use the Threat Model Document for Implementers as needed for his/her internal use. If there are conflicts between the originally published document and the resulting implementer threat model, the implementer should bring back to the working group/committee those specific differences for resolution.

Note: An implementer should take care when sharing his/her completed threat model document with third parties. It contains sensitive/confidential information detailing vulnerabilities of the implementer's system.

Since the EPS deals specifically with the information that has value to an attacker, some extra precaution beyond this document is recommended.

2 API Description

2-1. What is the name of the application/service? Electronic Payment Server (EPS) API Standard

2-2. Which of the following applies to this application/service?

[] This is a new project

[X] This is a new feature or function to an existing system

[] Backwards compatibility is required to interface with legacy systems

2-3. Briefly describe the application/service. For more details, consult the companion documentation for this specification.

3 Use Cases

There are four transaction types, (Use cases), that puts the EPS at high risk.

ID#	Short	Description
	Name	
01	Card Payment	User submits personal credit card information for
		payment
02	Card Pre-	User submits personal credit card account for
	Authorization	authorization
03	Refund	User submits personal credit card account for refund.
04	Reconciliation	Authorized user can retrieve partial or complete
	Reporting	account information. Note that is highly
		recommended that all the personal data be truncated
		and masked once the payment is collected.

4 Asset Identification

ID#	Asset	Criticality	Potential	Potential	Proposed
	Description		Attacker	Harm	Protection
					Method
01	Payment Card	Critical	Criminal,	Catastrophic for	Work to implement
	Data		Employee	large amount of	industry standard
				data; significant	guidelines. Make sure
				for small	the software is always
				amount of data.	up to date. Work with
					Cybersecurity experts
					to make sure the
					system is secure and
					data is protected.

5 Data Identification

					Propo	osed Data Protec	tion
ID#	Data Description	Data Classification	Compliance and/or Regulatory Requirements	Is data stored after use?	Storage	Transmission	Processing
01	Personal Identification Information	Sensitive.	Yes	Partially	Encrypted	Encrypted	Yes

5-1. Which of the following sensitive/confidential data is stored, transmitted, or processed by this application/service?

[] N/A – Please explain _____

[X] Encryption Keys

[] Intellectual Property (IP)

[] Passwords

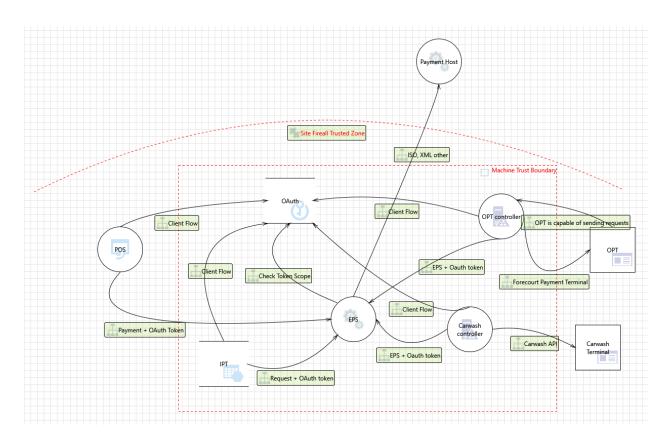
[X] Sensitive Data (e.g., transaction log data, first 6 and last 4 digits of PAN, last 4 digits of PAN + ZIP Code)

[X] Proprietary data (e.g., fuel control data, authorization, completion)

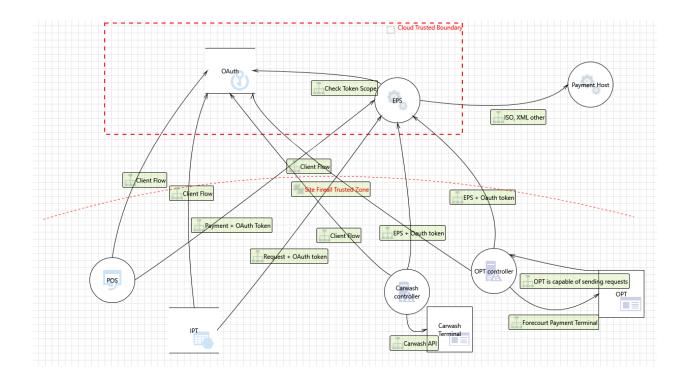
- [] Trade Secrets (e.g., price book data)
- [] Other Please specify _____
- 5-2. Which of the following PCI data is stored, transmitted, or processed by this application/service?

[] N/A – Please explain _____

[X] Cardholder data


[X] Cardholder name

[X] CAV2, CVC2, CVV2, CIDE


- [X] Expiration date
- [X] Full magnetic stripe data or chip equivalent
- [X] PIN/PIN Block
- [X] Primary Account Number (PAN)
- [X] Service Code
- [] Other Please specify _____

5-3. Which of the following PII data is stored, transmitted, or processed by this application/service?

- [] N/A Please explain _____
- [X] Account number
- [] Address (including all geographic subdivisions smaller than state)
- [] Biometric identifiers including voice or fingerprint
- [] Birthdate
- [] Certificate or License number (including driver's license number)
- [] Email address
- [] Fax number
- [] IP Address
- [X] Name
- [] Photographic image
- [] Social security/social insurance number
- [X] Telephone number
- [X] Vehicle or device serial number
- [X] Zip or postal code
- [] Any other characteristic that could uniquely identify an individual
- [] Other Please specify _____
- 5-4. Which of the following retail fuel/convenience store data is stored, transmitted, or processed by this application/service?
 - [] N/A Please explain _
 - [] Command and control systems data
 - [] Fuel and product pricing
 - [] Industrial Control System (ICS) data
 - [] Life-safety control systems data
 - [X] Payment data
 - [X] Sales data
 - [] Other Please specify _____

- All communication is assumed to take place over TLS
- Whenever sensitive information is present, there is an assumption that the data will be encrypted using the RSA public key provided by the EPS
- The systems depicted in the diagram assume the use of OAuth for authentication and authorization.

6 API Consumers

ID#	API	Description	Trust Level
	Consumer		
01	POS	No admin account	No admin user
02	OPT	No admin account	No admin user

7 Data Protection

This section focuses on how data is protected. There are several sub-sections that focus on specific data protection concerns.

7.1 Data Confidentiality

This section focuses on what is done to protect the confidentiality of the data.

7.1-1. Which of the following controls are used to ensure data confidentiality? (Select all that apply.)

[] This application/service does not store, transport, or process any sensitive information.

- [X] Access to data is limited by a need-to-know or need-to-use and access controls
- [X] Data is encrypted at rest
- [X] Data is encrypted during transmission
- [X] Passwords are hashed with a one-way function
- [X] Data is stored, processed, and transmitted on a protected network
- [X] Data is stored, processed, and transmitted in a protected facility
- [] Other Please specify _

7.2 Data Encryption

This section focuses on encryption and hashing and how they are used to protect data.

7.2-1. What is encryption used for? (Select all that apply.)

- [] N/A No sensitive data is stored, transported, or processed
- [X] Protecting payment card industry (PCI) data
- [X] Protecting personally identifiable information (PII)
- [] Passwords are stored using reversible encryption
- [] Other Please specify_
- 7.2-2. Which of the following describes how data at rest is protected? (Select all that apply.)
 - [] N/A No sensitive data is stored
 - [] None Sensitive data is not encrypted at rest
 - [X] Encrypted and stored in a file
 - [X] Encrypted and stored in a database
 - [X] Encrypted while in memory
 - [X] Sensitive data is stored in an encrypted database
 - [] Other Please specify _____

7.2-3. When is encryption used to protect data during transmission? (Select all that apply.)

[] N/A – No sensitive data is transmitted

[X] All of the sensitive data is encrypted on *trusted* networks

[] Only some (or none) of the sensitive data is encrypted on *trusted* networks

[X] All of the sensitive data is encrypted on **untrusted** networks

[] Only some (or none) of the sensitive data is encrypted on **untrusted** networks

[] Other – Please specify ____

7.2-4. What encryption methods are used to protect data during transmission? (Select all that apply.)

[] N/A – No sensitive data is transmitted

[X] Point-to-point encryption

[X] VPN

[X] IPsec

[X] TLS

[] SSL

[X] Digital certificates (e.g., X.509)

[] Other – Please specify _____

7.2-5. Which of the following cryptographic algorithms are used by the application/service? (Select all that apply.)

[] N/A – No sensitive data is stored, transmitted, or processed

[] Some (or none) of the sensitive information is encrypted

[X] Well-vetted, industry standard cryptography (e.g., TLS, AES, ECC, RSA, WPA2)

[] Cryptographic algorithms that are deprecated or insecure (e.g., SSL, TLS 1.0, WEP, 3DES, DES, RC4)

[] Custom or "home-grown" cryptography

[] Other – Please specify _____

7.2-6. Which of the following hashing algorithms are used by the application/service? (Select all that apply.)

[] N/A – The application/service does not require the use of hashing.

[X] Well-vetted, industry standard hashing algorithms (e.g., SHA-256, SHA-384, SHA-512)

[] Hashing algorithms that are deprecated or insecure (e.g., MD4, MD5, SHA-1)

[] Custom or "home-grown" hashing algorithm

[] Other – Please specify _____

7.2-7. Which of the following is hashing used for? (Select all that apply.)

[] N/A – The application/service does not require the use of hashing.

[X] Data/message integrity

[X] Digital signatures

[X] Index and retrieve database items

[] Password storage/verification

[] Passwords are stored using special password hashing algorithms resistant to brute force attacks (e.g., Argon2, PBDKF2, bcrypt, scrypt)

[X] Message signing

[] Other – Please specify __

7.3 Data Integrity

This section focuses on what controls are used to protect the data integrity and detect unauthorized changes to the data. Put a "?" if the answer is unknown.

7.3-1. Which of the following controls are used to ensure data integrity? (Select all that apply.)

[¹] N/A – The application/service does not store, transport, or process any information that requires data integrity controls.

[X] Audit trails

[X] Backup and recovery mechanisms

[X] Change control systems

[X] Data is digitally signed

[X] Data is encrypted at rest

[X] Data is encrypted during transmission

[X] Input validation

[X] Physical and logical access controls

[X] Restricted system access for records

[] Other – Please specify ____

- 7.3-2. Which of the following mechanisms are used to protect data and prevent tampering? (Select all that apply.)
 - [] There are no controls used to protect data and prevent tampering

[X] API Gateway

[X] Certificate pinning (i.e., force use of a given certificate)

[X] Chain of custody

[X] Change management process

[X] Digital signatures

[X] Encryption

[X] Endpoint security

[X] Key rotation processes

[X] Network security

[X] Physical security

[X] Request signing

[X] Secure key management processes

[X] Security code review

[X] Third-party vulnerability assessment

[] Other – Please specify _____

8 Logging and Auditing

This section focuses on the security controls for auditing and logging to ensure the appropriate information is logged and adequately secured from adversaries.

8-1. Which of the following controls are used to restrict access and protect the contents of logs and audit trails? (Select all that apply.)

[] N/A – The application/service does not support audit trails and/or application logs

[X] Access to logs is controlled by access controls

[X] All sensitive/confidential data that gets logged is first encrypted or anonymized

[X] Each audit record is digitally signed

[X] Each audit record is digitally signed after concatenating the hash of the previous record

[X] Log entries are synchronized with other applications and systems using NTP/SNTP to ensure accurate date and time stamps

[X] Log entries capture enough data to allow debugging and forensic analysis

[X] Log/audit data is written to another secure logging server

[X] Log/audit data is written to another system

[X] Logs are regularly monitored for evidence of security incidents and other unexpected behavior

[X] Logs are retained in accordance to policy and compliance requirements

[X] Multifactor authentication is required to access the logs/audit trail

[] No confidential or sensitive information is captured in a log or audit trail

[X] Rely on operating system security provides the protection to the logs/audit trail

[] Sensitive/confidential data that gets logged is not encrypted or anonymized

[X] The entire log/audit trail is encrypted

[] Other – Please specify _

9 Compliance

This section focuses on compliance requirements and how they are fulfilled.

9-1. What policies or obligations govern the use or function of the application/service? (Select all that apply.)

N/A – Please explain
Customer contract
Employee handbook
Licensing agreement
Licensing agreement
Privacy policy
Security policy
Security policy
Terms of use
Vendor contract
Vendor or Partner as a business associate
Other – Please specify

10 Common Threat Examples

The following table consists of examples of common threats arranged by Attack Category and Security Control Category. Based on your understanding of the current or planned architecture and design, select the applicable threats by entering "X" in the "Is Threat a Concern" column. Note: Bolded threats/attacks are commonly considered for API implementations that implement strong authentication and access control (e.g., OAUTH v 2.0).

Although this section is to be filled in by the API Implementor, the API Designer must consider and be aware of the potential threats/attacks against the API due to architectural and design decisions.

Attack Category	Security Control Category	Is Threat a Concern?	Threats/Attacks
		Х	Data tampering
	Access control/authorization	Х	Disclosure of confidential data
			Forced browsing (attack by guessing URI)
			Horizontal privilege escalation
Broken access			Insecure Direct Object Reference
control		Х	Lack of individual accountability
		Х	Missing access control/authorization
			Over-privileged process and service accounts
		Х	Unauthorized access to administration
		Λ	interfaces

	Security	Is Threat	
Attack	Control	a	Threats/Attacks
Category	Category	Concern?	THE CULS/ TREACAS
	Category	X	Unauthorized access to configuration stores
		<u> </u>	Vertical privilege escalation
			Authentication bypass
			Brute force guessing attacks
			Cookie replay attacks
		Х	Credential interception
		X	Credential theft/leakage
			Dictionary attacks
			Failing to identify the user/entity
			Failing to maintain the user/entity
			Failure to limit excessive authentication
		Х	attempts
Broken	Authentication	Х	Hard-coded password, secrets
Authentication			Missing authentication
			Password guessing
			Predictable session IDs
		Х	Session hijacking
			Session replay
		X	Spoof endpoint, user, system, etc.
			Weak or unsalted password hashes
			Weak password initialization process (first use)
			Weak password reset process
			Weak session management
		Х	Client-Side Enforcement of Server-Side Security
Business logic			Security by obscurity
flaw			Workflow out of sequence
			Binary patching
	Secure design		Dynamic memory modification
Code tampering		Х	Local resource modification
FILL FL O			Method hooking
			Method swizzling
		Х	Disclosure of confidential data
		Х	Information disclosure
		Х	Man-in-the-middle attacks
		Х	Missing encryption of sensitive data
	Cryptography	Х	Network eavesdropping
		Х	Side channel attack
		V	Sniffing/eavesdropping unencrypted network
Data leakage		Х	traffic
Data leakage		Х	Unauthorized access to stored sensitive data
	Error handling &		Revealing sensitive system or application details
	Exception	Х	Verbose error messages and stack traces
	management	11	~
			Information leakage from programming
	Secure coding		comments left in code
			Information leakage from test code
	Secure configuration		Retrieval of clear text configuration secrets
			Canonicalization attacks
Data tampering	Input validation		Cookie poisoning/manipulation
			Form field manipulation/parameter tampering

	Security	Is Threat	
Attack	Control	_	Threats / Attacks
Category		a	Threats/Attacks
	Category	Concern?	
			Hidden form field manipulation/parameter
			tampering
			HTTP header manipulation
			Overwrite file with attacker's file
			Path traversal
			Query string manipulation/parameter
			tampering
			Unvalidated input used by the application
			Upload of a dangerous filetype
Denial of Service			Denial of Service (DoS) attacks
			Distributed Denial of Service (DDoS) attacks
			Cross-site scripting (XSS)
			Injection attacks
Injection			LDAP injection
5			Operating System command injection
			SQL injection
			XML injection
Insecure	Cryptography	X	Clear text communication of sensitive assets
communication		Х	Weak or broken ciphers such as SSL
			Clickjacking
_			Cross-Site Request Forgery (CSRF)
Insecure			Reverse engineering
development		X	Running outdated software
practices			Unhandled error/exception
	Secure coding		Use of dangerous functions
26.1			Using components with known vulnerabilities
Malware			Viruses and Rootkits
24			Accessing sensitive data in memory (including
Memory			process dumps) Buffer overflows
manipulation			
			Format string vulnerabilities
		77	Directory listing enabled on the web server
Missonfiguration	Commo configuration	X	Not changing default keys and passwords
miscomiguration	Secure configuration	Х	Running the application with debug enabled in
			production Running unnecessary services
			Attacker covers his tracks
Repudiation	Auditing and Logging		Attacker covers his tracks Attacker exploits an application without trace
Reputitation	Auditing and Logging		User denies performing an operation
			Encryption cracking (cryptanalysis)
			Encryption of sensitive data with weak or
Weak	Cryptography		broken algorithm
Cryptography	Cryptography		Loss of decryption keys
		V	
		Х	Missing encryption of sensitive data

11 Additional Threats

API is intended to implement the exchange of highly sensitive payment card information between systems. Particular attention should be applied to encryption, authentication and authorization for all systems deployed in a production environment. Consider engaging cybersecurity professionals inside or outside the organization prior to production implementation. Consider penetration testing for all client and server applications implementing the API.

A.References

A.1 Normative References

MITRE ATT&CK is a globally-accessible knowledge base of adversary tactics and techniques based on real-world observations. The ATT&CK knowledge base is used as a foundation for the development of specific threat models and methodologies in the private sector, in government, and in the cybersecurity product and service community. <u>https://attack.mitre.org/</u>

Common Weakness Enumeration (CWE) is a community-developed list of common software security weaknesses. It serves as a common language, a measuring stick for software security tools, and as a baseline for weakness identification, mitigation, and prevention efforts. <u>https://cwe.mitre.org/index.html</u>

Common Attack Pattern Enumeration and Classification (CAPEC) helps organizations understand how an adversary operates. This understanding is essential to effective cybersecurity. CAPEC helps by providing a comprehensive dictionary of known patterns of attack employed by adversaries to exploit known weaknesses in cyber-enabled capabilities. It can be used by analysts, developers, testers, and educators to advance community understanding and enhance defenses. <u>https://capec.mitre.org/</u>

A.2 Non-Normative References

None